

http:

ACME

Urs guide

Edited : 2024-11-22
Version : 1.2
Reference :
Authors :
Classification : Confidential

ACME Technical Document

Document history
Version Date Author Modifications

1.0 2024-07-24 J.Dusautois Creation

1.1 2024-10-10 J.Dusautois Add error code

1.2 2024-11-21 J.Dusautois Add certbot example for challenge DNS

1.3 2025-01-24 J.Dusautois Precise result code

Add comment for certbot usage

Add acme.sh sample config

1.4 2025-02-25 J.Dusautois Precise certificate issuance and dcv validation

Add acme client “lego” example

1.5 2025-03-28 J.Dusautois Fix acme test url

1.6 2025-04-16 J.Dusautois Add error code

1.7 2025-04-30 J.Dusautois Added precision to the validation of dcvs

1.8 2025-05-20 J.Dusautois Add IP source used for DCV

1.9 2025-06-26 J.Dusautois Fix issue in service url

2.0 2025-04-11 L.Ghesquier Add new IP address

2.1 2025-12-15 C.Gourdin Update RSA minimum to 3072

Document validation
Entity Validator Date

CERTIGNA

J.DUSAUTOIS

2024-07-24

TABLE OF CONTENTS

Introduction .. 5

Purpose ... 5

Schema ... 5

Usage context .. 5

Prerequisites ... 6

ACME account ... 6

Security ... 7

Revocation .. 7

Account revocation .. 7

Notifications .. 7

Issuing certificates ... 7

Get certificate .. 8

Result code ... 9

IP used to validate DCV ... 10

ACME client .. 11

Certbot client .. 11

WACS client .. 12

acme.sh .. 13

lego 13

ACME API .. 13

amce4j 13

Introduction

Purpose
This document describes the functionalities, and the implementation of the functions offered by
the "ACME" service developed and hosted by CERTIGNA. This service is used to automatically
issue TLS certificates.

Schema

1. Account is created
2. Operator valid account
3. Client ACME request certificate with account ID
4. ACME server verify the validity of the request and the validity of the account
5. ACME server verify challenge (http or dns)
6. ACME server request PKI to issue certificate

Usage context
This service complies with the RFC8555 for Automatic Certificate Management Environment. It
offers the following features:

• Account binding

Client web
site

Certigna
ACME service

Certigna
ACME

manager

Certigna site

Certigna RA
PKI

1

3 4

6
5

Certigna
Operator

2

• Order management
• Authorization and challenge for DNS and HTTP
• Certificate issuance
• Certificate revocation
• Key change (coming soon)

The service URL are:

• For test: https://acme-ov-test.certigna.com/directory https://acme-pp.certigna.fr/
• For production: https://acme-ov.certigna.com/directory

Prerequisites
To use the ACME service, an ACME account is required. This account must be created on the
Certigna website, before a certificate can be issued.

Since Certigna only provides validated certificates for the organization, the account must be
activated by the Certigna operator before use. The operator verifies all the mandatory documents
to prove that the organization is authorized to request certificates for a specified domain name.

The following checks are carried out before certificate can be requested:

• The organization set in certificates is authorized
• The certificate manager is authorized by their company
• The domain name is under the control of the company
• All necessary documents are provided
• The company has sufficient credit

The following checks are carried out during certificate issuance:

• The requester can prove it manages the domain name by placing a file with dynamic
content in a well know directory on his/her server or in DNS entry.

• The DNS entry CAA contains certigna.com or DNS CAA entry does not exist for the
requested domain name.

If more than one domain name is requested, the above checks are performed for each domain.

ACME account
The ACME account must be created on the web site. It is identified by an Id and an hmac key. This
information is provided by the certificate manager when the account is created.

https://acme-pp.certigna.fr/

The id is a UUDI V4 and looks like “6136f1b5-39c8-4417-b8a7-c4114b092be6” and the hmac key
looks like “fh2fRV_yZ3NJZyjAQzSlWcPv1z91FEtO2pO62PRgZXk”. Do not use the padding ‘=’
characters if present.

The id and the key are used to bind the account with the acme client tool. After first used, the
hmac key is no longer used.

Security
The acme account is protected by the hmac key during account activation. During this step, an
RSA key pair is generated by an ACME client and the public part is stored in the ACME server.

All subsequent exchanges with the ACME server will be signed with the private key. The account
id and hmac key is no longer used. Public key can be change with the ACME keyChange endpoint.

Careful! Some ACME clients ignore the key id and hmac key that you provide on the command
line when the account is already activated.

Revocation
Certificate can be revoked with ACME client. Certificates can also be revoked by the
administrator on the web site.

For example, with certbot, the command revoke can be used to revoke a certificate.

Account revocation
If the ACME administrator revoked the ACME account, all not expired certificates issued with the
revoked account are also revoked.

Notifications
Multiple notifications can be sent by email to the contact associated with the administrator
account. The following emails can be sent:

• Certificate issued: with the list of certificates issued in the last 24 hours.
• Missing documents: with the list of missing documents to validate the account. Without

these documents, the account remains PENDING, and no certificate can be issued.
• Expiring documents: with the list and expiration date of each document. When the

document expires, if no one replaces it, the account is put on PENDING status and no
further certificates can be issued.

• Expired certificates: With the list of certificates near the end of the validity period.

Issuing certificates
To issue certificates, you must use an ACME client.

You must provide the keyId and hamcKey to authenticate the organization.

All domain names you want to put in the certificate must be defined in the domain list. For
SSL_RGS certificate, all FQDN must be present in the domain list.

During issuance, the domain is validated (DCV). Two methods are available: dns-01 and http-01.

dns-01

A challenge must be set in TXT entry in the path of the domain to set in certificate prefixing by
_acme-challenge (ie _acme-challenge.mondomain.com). You must set one TXT entry per SAN in
the certificate with the challenges provided by ACME server during the certificate request.

The registration of the challenge must be automated by the acme client. For example, certbot or
acme.sh provide plugins that can be used to automatically set the TXT value.

If you can't dynamically access the DNS server to set the TXT value, you can set a static CNAME
entry that points to another DNS server. For example, if you want to set
test.domaininmycert.com in your certificate, set the entry _acme-
challenge.test.domaininmycert.com CNAME acme.domainaccesible.com. In the dns server
domainaccessible.com, insert the TXT value to validate the dcv in acme.domainaccessible.com
TXT <my challenge>

We follow the CNAME to look after the TXT challenge.

You can define multiple TXT challenges in the same domain name. We are looking for the right
one to validate the DCV. Don't forget to delete old TXT entries. The limit for the number of TXT
entries is around 100.

http-01

http-01: A challenge must be set in a file. This file is accessible with an http request on
http://domainname/.well-known/acme-challenge/<challengeId>. The domainname is the
name you want to set in certificate. ChallengeId is the challenge provided by ACME server during
the certificate request.

Domainname represents the name that you want to define in the certificate. For example, if you
want to set up a SAN with test.mydomain.com, we look at the DCV file in
http://test.mydomain.com/.well-known/acme-challenge/<challengeId>.

challengeId is the challenge provided by ACME server during the authorization step.

You can use http redirection to return another server. If the redirect refers to a URL in https, the
validity of the certificate is not checked.

Get certificate
When the certificate is issued, the acme client obtains it. During this step, the authority's
certificate is also read.

http://test.mydomain.com/.well-known/acme-challenge/%3cchallengeId

The ACME client generates a file containing the certificate in pem format and another file
containing the certificate chain. These two files, along with the file containing the private key,
should be used to configure the http server.

Result code
If certificate is correctly issued, the response is the certificate and the chain.

If an error occurred, the following code can be returned:

• DEACTIVATED_ACCOUNT: The ACME account is deactivated. You cannot use any more
this account.

• DEACTIVATED_EXTERNAL_ACCOUNT: External account is deactivated. You cannot use
any ACME account referenced by the deactivated external account.

• DOMAIN_NOT_ASSOCIATED: The domain is not authorized for the ACME account.
• DOMAIN_NOT_FOUND: The requested domain is not in the domain list for the AMCE

account used. Remember, for SSL_RGS certificate, you must define all FQDN in domain
list.

• EXPIRED_ACCOUNT: The ACME account has expired. You must regenerate the key to
reusing this account.

• EXPIRED_EXTERNAL_ACCOUNT: The external account referenced by ACME account is
expired. You certainly provide new documents to extend the account validity.

• EXTERNAL_ACCOUNT_NOT_FOUND: The external account referenced by ACME account
is not found.

• INVALID_DNSCAA: One or more of domain name required in certificate is blocked by CAA
entry in DNS. You must specify a CAA entry with the value “issue certigna.com”.

• INVALID_DOMAIN: The requested domain is invalid.
• INVALID_DOMAIN_FOR_WILDCARD_PROFILE: Your ACME account is configured to issue

wildcard certificates. It cannot be used to generate a non-wildcard certificate.
• INVALID_PROFILE_FOR_WILDCARD: Your ACME account is configured to issue non-

wildcard certificate, and you try to generate wildcard certificates.
• NO_DOCUMENT_FORM_FOUND: A valid form document is missing.
• NO_VALID_ORGANIZATION_DOCUMENT_FOUND: No document is provided for the

organization.
• NOT_SAME_ORGANIZATION: In the requested certificate there are two domains managed

by two different organizations.
• ORGANIZATION_IS_NOT_VALID: The status of the organization is not valid. Perhaps a

document is missing, expired, or invalid.
• OUT_OF_CREDIT: The is not enough credit to generate the certificate.
• PENDING_EXTERNAL_ACCOUNT: The status of the external account is pending. Perhaps

a document is missing, expired, or invalid.

• RATE_LIMITED: The number of requests has been reached. for example, when validating
the DCVs, this means that the DCV could not be validated after 20 requests.

• REVOKED_ACCOUNT: The ACME account is revoked. You can no longer issue certificates
with this account. Please create a new ACME account.

• REVOKED_EXTERNAL_ACCOUNT: The external account is revoked. You can no longer use
the ACME account managed by this account. Please create a new external account and
ACME account.

• SUSPENDED_ACCOUNT: The ACME account is suspended. Please reactivate the
account to issue certificates.

• SUSPENDED_EXTERNAL_ACCOUNT: The external account is suspended. Please
reactivate the external account to be able to use the ACME account.

• UNAUTHORIZED_DOMAIN: The domain name you try to set in certificate is not
authorized. Please verify that all documents are provided to authorize the ACME account
to issue certificates with this domain name.

• ACME_ORDER_NOT_READ: Internal error when trying to retrieve the certificate order.
• ACME_REQUEST_NOT_FOUND: Internal error when trying to retrieve the certificate

request.
• ACME_ORDER_FINALIZE_ERROR: Error during the generation of the certificate.
• ACME_CA_ERROR: Error during the generation of the certificate by the Certificate

Authority.
• ACME_OTHER_ERROR: Other internal server error.
• ACME_DEACTIVATED: We receive an end-of-generation provided by le ACME client.
• BAD_SIGNATURE: The exchange between the client and the server is signed with the

wrong key. The root cause is using the same acme account on different machines.

IP used to validate DCV
195.90.119.41
195.90.119.43
46.35.1.202
195.90.119.45
195.90.119.47
91.151.118.242
213.56.79.70
146.59.18.47

ACME client
ACME Client is the common name for identifying programs and APIs that comply with RFC 8555.

Certbot client
certbot is a tool provided by Letsencrypt to request and install certificates.

The following options must be provided to request a certificate on Certigna ACME server:

• server: The url of the directory end point (ie. https://acme-ov-test.certigna.fr/directory)
• eab-kid: The account id (ie. 6136f1b5-39c8-4417-b8a7-c4114b092be6)
• eab-hmac-key: The hmac key base64 encoded (ie.

fh2fRV_yZ3NJZyjAQzSlWcPv1z91FEtO2pO62PRgZXk)
• d: The domain name for which the certificate is requested. You can use this option

multiple times to request a certificate with an additional SAN name.
• key-type: rsa (the only supported). Only key length 3072 is supported.

There are several other options to set the installation method or the validation method of the
challenge.

Sample to use certbot command in challenge http with a certbot http server:

certbot certonly --eab-kid 6136f1b5-39c8-4417-b8a7-c4114b092be6 --eab-hmac-key

fh2fRV_yZ3NJZyjAQzSlWcPv1z91FEtO2pO62PRgZXk --server https://acme-ov-

test.certigna.fr/directory --email certificate@certigna.com --standalone --cert-path

/etc/certigna/acme --key-type rsa -d test.certigna.com

If you need to use challenge dns, you can use this command:

certbot certonly --eab-kid 6136f1b5-39c8-4417-b8a7-c4114b092be6 --eab-hmac-key

fh2fRV_yZ3NJZyjAQzSlWcPv1z91FEtO2pO62PRgZXk --server https://acme-ov-

test.certigna.com/directory --cert-path /etc/certigna/acme --key-type rsa --manual-auth-hook

./createtxt.sh --manual-cleanup-hook ./cleantxt.sh --preferred-challenges dns-01 --manual -d

test.certigna.com

Where createtxt.sh and cleantxt.sh are script to manage your dns server. This script can be
something like:

#! /bin/bash

echo "Create dns TXT"

echo "domain: $CERTBOT_DOMAIN"

echo "challenge: $CERTBOT_VALIDATION"

echo "file: $CERTBOT_TOKEN"

echo "auth: $CERTBOT_AUTH_OUTPUT"

echo "remaining: $CERTBOT_REMAINING_CHALLENGES"

echo "all domains: $CERTBOT_ALL_DOMAINS"

domain=$CERTBOT_DOMAIN

challenge=$CERTBOT_VALIDATION

tmpFile="/tmp/nsupdate.txt"

https://acme-ov-test.certigna.fr/directory

echo "server 127.0.0.1" > $tmpFile

echo "zone soapui.web" >> $tmpFile

#echo "update delete _acme-challenge.$domain 10" >> $tmpFile

echo "update add _acme-challenge.$domain 10 TXT $challenge" >> $tmpFile

echo "send" >> $tmpFile

echo "quit" >> $tmpFile

nsupdate -k "/etc/bind/keys" -v "$tmpFile"

The challenge and other information are provided by environment variable.
CERTBOT_VALIDATION contains the challenge to put in TXT entry on the DNS server.

In my example, I use nsupdate to update the DNS server. You can use other tools or api call using
curl to set up the entry in your DNS server.

If you cannot have permission to modify TXT entry in your DNS, you can create a static entry
_acme-challenge in your DNS with a CNAME redirecting to another public DNS you managed. In
this public DNS you can add TXT entry when script is activated by --manual-auth-hook option.

If you need multiple ACME account in one machine, you must specifiy the account path with the
argument --config-dir.

You should not use the same account on different machines unless you copy the account key to
the configuration directory.

WACS client
wacs is a tool for Windows. It is an open-source project written in csharp. wacs is also an API.

The following options must be provided to request certificate with wacs:

• baseuri: The service base url (ie https://acme-ov-test.certigna.fr/directory)
• eab-key-identifier: The account id (ie 6136f1b5-39c8-4417-b8a7-c4114b092be6)
• eab-key: The account hmac key base64 encoded (ie

fh2fRV_yZ3NJZyjAQzSlWcPv1z91FEtO2pO62PRgZXk)
• host: The domain name for which the certificate is requested

Sample to use wacs command:

wacs --verbose --baseuri https://acme-ov-test.apitest.web/directory --nocache --id test --
friendlyname apitest --closeonfinish --eab-key-identifier 6136f1b5-39c8-4417-b8a7-
c4114b092be6 --eab-key fh2fRV_yZ3NJZyjAQzSlWcPv1z91FEtO2pO62PRgZXk --commonname
test.certigna.com --host test.certigna.com

https://acme-ov-test.certigna.fr/directory

acme.sh
With acme.sh you need to place two orders. The first is only to be done once.

1. Account Registration
acme.sh --register-account --eab-kid XXXX --eab-hmac-key XXXX --server https://acme-
ov-test.certigna.com/directory

2. Certificat (en mode webroot)
acme.sh --issue -d test.monsite.com -w /var/www/default/test-monsite --server
https://acme-ov-test.certigna.com/directory \
--k 3072 # Nécessaire pour utiliser une clé RSA avec la valeur suivante : 3072 \
--cert-file /etc/ssl/acme/test.monsite.com.pem \
--key-file /etc/ssl/acme/test.monsite.com.key \
--fullchain-file /etc/ssl/acme/test.monsite.com.fullchain.pem \
--reloadcmd "systemctl reload apache2"

lego
lego is an acme client written in GO.

Here is an example of a parameter to provide to request the issuance of a certificate.

lego --server https://acme-ov-test.certigna.com/directory -d mondomain.com --email
monemail@tessi.fr --eab --kid 9cf3b207-2c6e-4ccf-bc82-2d25fef94021 --hmac
WHgzMSZnXkVIJ2F1PDdWfEdTcUJ1dSh9KTwlLk9bKCpbODxXOkxiJg --http --http.webroot
"/var/www/html " --accept-tos --key-type rsa3072 run

With this command, a certificate request will be sent to our test server. The dcv will be validated
by http.

ACME API

amce4j
This api provides acme capabilities for java.

Sample code

 {

 final String domainTest = "test.certigna.com";

 // Account identification

 final String accountId = "6136f1b5-39c8-4417-b8a7-c4114b092be6";

 final byte[] hmacKey = " fh2fRV_yZ3NJZyjAQzSlWcPv1z91FEtO2pO62PRgZXk "

https://acme-ov-test.certigna.com/directory
https://acme-ov-test.certigna.com/directory
https://acme-ov-test.certigna.com/directory

 // Initialize key generator

 final SecureRandom secureRandom = new SecureRandom();

 secureRandom.setSeed(new byte[0]);

 final KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");

 keyPairGenerator.initialize(new RSAKeyGenParameterSpec(3072, RSAKeyGenParameterSpec.F4),

secureRandom);

 // Start ACME session

 final Session session = new Session(target(AcmeDirectoryResource.PATH).getUri());

 // login with account identification

 final Login login = new AccountBuilder()//

 .agreeToTermsOfService()//

 .onlyExisting()//

 .useKeyPair(keyPairGenerator.generateKeyPair())//

 .withKeyIdentifier(accountId, new SecretKeySpec(hmacKey, "HMAC"))//

 .createLogin(session);

 final Account account = login.getAccount();

 // Create order with domain name

 final Order order = account.newOrder().domains(domainTest).create();

 Assertions.assertEquals(Status.PENDING, order.getStatus(), "Order status not pending");

 // Query authorization challenges until authorization is valid

 for (final Authorization authorization : order.getAuthorizations())

 {

 if (authorization.getStatus() == Status.VALID)

 {

 // Authorization is valid, certificate can be issuance can be requested

 continue;

 }

 try (final Connection conn = session.connect())

 {

 final JSONBuilder claims = new JSONBuilder();

 final Identifier identifier = new Identifier(Identifier.TYPE_DNS,

authorization.getLocation().toString());

 claims.put("identifier", identifier.toMap());

 conn.sendSignedRequest(authorization.getLocation(), /* claims */null, login);

 final Authorization auth = login.bindAuthorization(authorization.getLocation());

 for (final Challenge challenge : auth.getChallenges())

 {

 if (challenge.getStatus() == Status.VALID)

 {

 continue;

 }

 switch (challenge.getType())

 {

 case "dns-01":

 final Dns01Challenge dns01Challenge = (Dns01Challenge)challenge;

 // Put here call to function to set dns challenge

 break;

 case "http-01":

 final Http01Challenge http01Challenge = (Http01Challenge)challenge;

 // Put here function to set challenge in wellknown path

 break;

 default:

 break;

 }

 // Send notification to ACME server to check challenge

 challenge.trigger();

 // Wait until challenge is validated by ACMLE server

 while (challenge.getStatus() != Status.VALID)

 {

 Thread.sleep(1_000);

 authorization.update();

 }

 }

 }

 }

 // Generate CSR

 final KeyPair keyPair = KeyPairGenerator.getInstance("RSA").generateKeyPair();

 final ExtensionsGenerator extGen = new ExtensionsGenerator();

 extGen.addExtension(Extension.subjectAlternativeName, false, new GeneralNames(new

GeneralName(GeneralName.dNSName, domainTest)));

 final CertificationRequestInfo requestInfo = new CertificationRequestInfo(//

 new X500NameBuilder().build(), //

 SubjectPublicKeyInfo.getInstance(keyPair.getPublic().getEncoded()), //

 new DERSet(new Attribute(PKCSObjectIdentifiers.pkcs_9_at_extensionRequest, new

DERSet(extGen.generate())))//

);

 final Signature signature = Signature.getInstance("SHA256withRSA");

 signature.initSign(keyPair.getPrivate());

 signature.update(requestInfo.getEncoded(ASN1Encoding.DER));

 final CertificationRequest pkcs10CertificationRequest = new CertificationRequest(//

 requestInfo, //

 new AlgorithmIdentifier(PKCSObjectIdentifiers.sha256WithRSAEncryption,

DERNull.INSTANCE), //

 new DERBitString(signature.sign())//

);

 // Send csr

 session.networkSettings().setTimeout(Duration.ofMinutes(2));

 order.execute(pkcs10CertificationRequest.getEncoded(ASN1Encoding.DER));

 // Wait certificate issuance

 while (order.getStatus() != Status.VALID)

 {

 Assertions.assertNotEquals(Status.INVALID, order.getStatus());

 Thread.sleep(1_000);

 order.update();

 }

 // download certificate

 Certificate cert = order.getCertificate();

 cert.download();

 X509Certificate certificate = cert.getCertificate();

 return certificate;

 }

www.certigna.com | www.tessi.eu
© 2022 Certigna, a tessi solution

http://www.certigna.com/

